
LP Duality : Set Cover and Vertex Cover1

• Approximation Algorithms and the Dual. So far, we have seen one way in which linear programs
have been useful in approximation algorithms design : we move to an LP relaxation, solve the LP to
get a fractional solution, and then round the solution to obtain an integral approximate solution. The
approximation factor is often proved by comparing with the value of the LP relaxation rather than
the integer optimum. The “LP solver” is thought of as a black box. We now show how the dual of
a linear program is used in approximation algorithms. The algorithms are explicit in that no LPs are
(explicitly) solved; these algorithms are often called “combinatorial algorithms”, and, in certain cases,
can be implemented faster2.

There are two broad ways in which the dual is used. One, and we have already seen this in disguise, is
called dual fitting where the dual is mainly used to analyze an already existing algorithm with respect
to the LP relaxation. The other, and perhaps more interesting, is called a primal-dual algorithm where
the dual is really used to guide the design process. In this lecture, we revisit the greedy set cover
algorithm and show that the “charging argument” we did way back is dual fitting, thereby removing
some of the mystery from the process. We also see a primal-dual 2-approximation algorithm for the
vertex cover problem.

• Set Cover LP and Dual Fitting. Let’s begin with the LP relaxation for the set-cover problem and also
write its dual.

lp(S) := minimize
m∑
j=1

c(Sj)xj (Set Cover LP)

∑
j:i∈Sj

xj ≥ 1, ∀i ∈ U (1)

xj ≥ 0, ∀j = 1, . . . ,m (2)

The dual has a variable for every constraint above. Since there is a constraint per element i ∈ U , there
is a dual variable yi for every i ∈ U .

dual(S) := maximize
∑
i∈U

yi (Set Cover Dual)∑
i∈Sj

yy ≤ c(Sj), ∀j ∈ [m] (3)

yi ≥ 0, ∀i ∈ U (4)

Now, I would ask you to recall (or re-read) the analysis for the GREEDY SET COVER algorithm from
long back. If you recall, the algorithm proceeds in rounds, and in each round picks a set Sj with

1Lecture notes by Deeparnab Chakrabarty. Last modified : 30th Jan, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2Though it is often hard to compete with the industry level LP solvers which have been improved over decades.

1

minimum c(Sj)/|Sj ∩ X| where X is the current set of uncovered elements. In the analysis, we
devised a “charge” αi for every elements with the property that

for all sets Sj ,
∑
i∈Sj

αi ≤ c(Sj) ·Hd, and alg :=
∑
i∈U

αi

where d is the maximum size of a set (and Hd is the dth harmonic number). This immediately implies
that yi := αi

Hd
is a feasible solution to (Set Cover Dual). And therefore, what we get is

alg

Hd
=

∑
i∈U

yi ≤︸︷︷︸
since y is a feasible solution to a maximization LP

dual(S) =︸︷︷︸
Strong Duality, but note that only Weak Duality is needed

lp(S)

which in turn proves that alg ≤ Hd · lp(S). This is a stronger result than what we concluded way
back in the course; then, we only compared ourselves with opt. But now, we see that the charging
argument in fact put an upper bound of Hd on the integrality gap as well.

This technique of “fitting a feasible dual solution” to charge for the algorithm’s performance, is called
dual fitting.

• Primal-Dual Algorithm for Vertex Cover. We now describe the primal-dual methodology with the
vertex cover problem. Here is the LP relaxation for the vertex cover problem.

lp(G) := minimize
∑
v∈V

c(v)xv (Vertex Cover LP)

xu + xv ≥ 1, ∀(u, v) ∈ E (5)

xv ≥ 0, ∀v ∈ V

We have already seen that solving the LP and then picking the vertices with xv ≥ 1/2 gives a 2-
approximation. The primal-dual schema gives an explicit 2-approximation algorithm. Let’s begin
with the dual.

dual(G) := maximize
∑
e∈E

ye (Vertex Cover Dual)∑
e:v∈e

ye ≤ c(v), ∀v ∈ V (6)

ye ≥ 0, ∀e ∈ E

The dual has a variable ye per edge of the graph (since the primal has a constraint per edge) and the
objective is to maximize the total ye’s. There is a constraint per vertex v; it says the total y-value
“faced” by any vertex v can’t be any bigger than the cost of the vertex.

The primal-dual schema, very generally, follows the following steps (at least for a minimization prob-
lem whose dual is a maximization problem).

a. Start with a feasible dual solution, usually the all zeros solution, and an empty (primal) solution
to the problem at hand.

b. Increment a subset of the dual variables till some dual constraint gets tight.

2

c. Taking cue from complementary slackness select the corresponding primal variable in the solu-
tion.

d. Repeat till either one can’t raise the dual any more, or one gets a feasible primal solution; often
the two occur together.

e. (Problem Dependent Step) Do some post-processing.

So, for the vertex cover problem, we start with a solution ye = 0 for all e ∈ E which is a feasible dual
solution. We also start with an empty vertex cover C = ∅. Then we try to raise ye for all e ∈ E, and
we continue doing so till for some vertex v1, the constraint (6) becomes tight. We add this v to our
vertex cover solution C. Note, this vertex will be the one which minimizes c(v)/ deg(v); and indeed,
this will also be the first vertex the greedy algorithm would pick. The greedy algorithm, we know,
can’t give a O(1)-approximation, and so what happens next is crucial.

Once the constraint corresponding to v1 becomes tight, we can’t increase ye for any e incident on v1.
Such edges are called frozen and these edges are precisely the ones that have already been covered
by C. The dual growing process continues but we only now increase ye only for unfrozen, or active,
edges. And then some other vertex v2 becomes tight. Is v2 the second vertex the greedy algorithm
would’ve picked? Not necessarily, right? This is how this algorithm differs from the normal greedy
algorithm. We add v2 to C, freeze all active edges incident on v2, and continue.

We proceed till all edges become frozen and we return C. Note that since all frozen edges are indeed
covered, what we return will be a feasible vertex cover. What’s probably not clear is how expensive it
can be.

1: procedure PRIMAL-DUAL VERTEX COVER(G = (V,E), c(v)):
2: ye ← 0 for all e ∈ E; C ← ∅; A← E; F ← ∅.
3: while A 6= ∅ do:
4: Increase ye for each e ∈ A till some (6) is equality for some v.
5: . Indeed, you can quickly figure this v: it is the one minimizing c′(v)/ degA(v)

where c′(v) = c(v) minus the y-mass v already faces, and degA(v) is the number of A-
edges incident on v.

6: C ← C + v; A ← A \ ∂G({v}); F ← F ∪ ∂G. . All edges incident on v are not
covered.

7: return (C, y).

• Analysis.

Theorem 1. PRIMAL-DUAL VERTEX COVER returns (C, y) with
∑

v∈C c(v) ≤ 2
∑

e∈E ye, and
y is a feasible solution to (Vertex Cover Dual). In particular, the algorithm is a 2-approximation
algorithm.

Proof. First, we note that y is a feasible solution to (Vertex Cover Dual) by design since whenever a
constraint becomes tight we stop increasing any variables participating in that constraint.

Next, we observe that whenever we pick a vertex in C it is only because c(v) =
∑

e:v∈e ye at that
point. Therefore, we get ∑

v∈C
c(v) =

∑
v∈C

∑
e:v∈e

ye =
∑
e∈E

ye · |C ∩ e|

3

But an edge e contains at most two vertices, and worst case both are in C. Thus, |C ∩ e| ≤ 2, and this
proves the theorem.

Notes

References

4

